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Three areas in which Coulomb interactions are of obvious importance are considered in turn, namely liquid
alkali metals, electron–hole droplets, and lithium halides. The focus in the first two areas is dominantly on
critical point properties, whereas in the third area the solid–liquid transition is the predominant interest.

Keywords: Alkali metals; Electron–hole droplets; Lithium halides

1. BACKGROUND AND OUTLINE

In this review we will demonstrate some correlations between various properties char-
acterizing phase boundaries of Coulomb liquids. We start in Section 2 with phenomen-
ology of the liquid–vapor coexistence curve (LVCC) of the liquid metals Rb and Cs in
comparison with some insulating liquids. Section 3 deals with the density dependence of
the critical temperature of electron–hole droplets in relation to that of the liquid alkali
metals. The dependence of the melting temperature on density in the Li halides is the
subject of Section 4. We end in Section 5 with a brief summary.

2. EMPIRICAL CORRELATIONS FOR THE LIQUID–VAPOR

COEXISTENCE CURVE OF THE ALKALI METALS

Much progress has come in understanding the behavior of the low-density fluid alkalis
through the experiments of Jüngst et al. [1], both using neutron scattering to study
structure and also by thermodynamic measurements. In this section, it is the latter
that provides the focus, and especially the mapping experimentally of the liquid–
vapor coexistence curves of Rb and Cs. These elements are especially interesting to
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examine the influence of long-ranged Coulomb interactions on properties near the
critical point since their metal–insulator transition coincides to within experimental
error with the liquid–vapor critical point. Note that the one-component plasma
(OCP), which is an important reference system for many other properties, does not
have a liquid–vapor transition.

One of the striking results of the measurements of Jüngst et al. was the demonstration
of marked departures from the law of rectilinear diameters (see e.g. [2,3]). This law,
which is one of the classic laws of the physics of liquids, was stated already over a
hundred years ago and essentially says that the average of the liquid and vapor density
varies linearly with temperature over the whole range of temperature values, up to the
critical point. Although surprisingly simple, no deviations had ever been reported until
the experiments of Jüngst et al. on the heavy liquid alkalis.

As discussed in the introduction, we shall here take a strictly phenomenological
approach to characterize these deviations, motivated by the early work of Guggenheim
[4], and later March et al. [5], on insulating fluids such as neon and ethylene. We start
by defining an order parameter � for the first-order liquid–vapor phase transition
through

� ¼
�l � �g

�c
ð1Þ

where �l, �g and �c respectively denote the density in the liquid phase, the gas phase and
at the critical point. Then, as one expects for an order parameter, � is zero above the
critical point and different from zero below the critical point, where the ‘‘ordered’’
liquid phase is still present. The scaled average density is given by

� ¼
�l þ �g
2�c

ð2Þ

which evidently means �¼ 1 at the critical point.
We will first determine how the observed breakdown of the law of rectilinear

diameters manifests itself in the dependence of the average density � on the order
parameter �. From the work of Guggenheim, who fitted rational exponents to experi-
mental data on the LVCC of several insulating liquids, March et al. [5] obtained the
relation

� ¼ 1þ
6

243
�3 ð3Þ

In Fig. 1 we have plotted � vs �3 for Rb. Clearly the linearity obtained by Guggenheim
for insulating liquids is not reproduced for metallic Rb and a similar conclusion was
obtained for Cs. This has led us to generalize Eq. (3) to the form

� ¼ 1þ @��: ð4Þ

Empirically, we found that �¼ 2 is now the correct choice for Rb and Cs as is demon-
strated also in Fig. 1 for Rb. Thus our first conclusion is that � is markedly different as
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we go from the insulating fluids, where �¼ 3 works well, to the specific metallic cases
Rb and Cs, where �¼ 2 is appropriate.

Generalizing the work of March et al. [5] we next point out that both the results for
the heavy alkali metals and the insulating liquids can be embraced by the differential
equation

�
d2�

d�2
þ ð�� 1Þ

d�

d�

� �2

¼ 0 ð5Þ

with the appropriate choice for �. Similar to the insulating case discussed by March
et al., we expect this form to display at least some of the structure expected in a
more definitive theory of the coexistence curve.

To explicitly obtain the temperature dependence of the average density �, we first
examine the exponent which determines how � tends to zero as the critical point is
approached. Empirically, we find that the data is well described by

� ¼ constant� 1�
T

Tc

� �1=3

ð6Þ

FIGURE 1 Shows experimental data of Jüngst et al. along the liquid–vapor coexistence curve for Rb in the
form of relations between difference density � defined in Eq. (1) and average density � in Eq. (2). It can be seen
that the linear plot corresponds to �2 vs �. Guggenheim’s form Eq. (3), valid for example for neon and
ethylene, is plainly not appropriate for the metallic fluid Rb.

COULOMB LIQUIDS 219

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
4
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



as is demonstrated for Cs in Fig. 2. From experiments on insulating liquids an exponent
(0.35� 0.02) was found (see e.g. [6]) and so taking into account experimental error, the
behavior of the order parameter is not, or only very little, changed when going from
insulating liquids to the metallic systems Rb and Cs.

With �¼ 2 in Eq. (4), as is appropriate for metallic Rb and Cs, one is then led to the
prediction for �

� ¼ 1þ constant� 1�
T

Tc

� �2=3

ð7Þ

while of course, the law of rectilinear diameters simply means that

� ¼ 1þ constant� 1�
T

Tc

� �
ð8Þ

Our second conclusion is thus that departures from the law of rectilinear diameters are,
for Rb and Cs, quantitatively well described by the power law in ð1� ðT=TcÞÞ used in
Eq. (7).

Note that our exponents describe the behavior of the considered properties over
the whole range of temperatures available from experiment. Because of this, these

FIGURE 2 Difference density � plotted vs (1�T/Tc)
1/3, where Tc is the critical temperature, using the data

of Jüngst et al. for metallic Cs. The slope of the straight line has a value of 4.12� 0.03.
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exponents are strictly speaking not critical exponents, which describe the behavior only
very close to the critical point.

To illustrate the overall quality of our proposed exponents and the range of their
validity we plot in Fig. 3 the liquid–vapor coexistence curve for Rb, reconstructed
from Eqs. (6) and (7), together with the experimental data. Very good agreement
over the full range of available data, including very close to the critical point, is shown.

It seems natural to relate the breakdown of the law of rectilinear diameter to the
range of the pair-wise interaction, which is of course very different for insulating liquids
and liquid metals. As discussed in [6] we expect the pair-potential in liquid metals to be
proportional to r�4 whereas the insulating liquids interact through a van der Waals r�6

potential. If the polarization contribution r�4 is indeed present, this should lead to an
ionic structure factor having the small-k form

SiiðkÞ ¼ Siið0Þ þ a1kþ a2k
2 þOðk3Þ ð9Þ

and it would be of clear interest if a small angle scattering experiment could confirm
the expansion (9).

The relation between interatomic potentials and liquid–vapor critical points was
recently studied by Okumura and Yonezawa [7] using molecular dynamics simulations.
They found that the law of rectilinear diameters was fulfilled for all potentials consi-
dered but these only included van der Waals type potentials and potentials with even
stronger decay at large distances. It would be very interesting to extend their

FIGURE 3 Shows quality of reconstruction of liquid–vapor coexistence curve for Rb. The circles represent
the experimental data of Jüngst et al., whereas the continuous curves are obtained using the 1/3 and 2/3 power
laws in Eqs. (6) and (7) for the difference density � and the average density � respectively.
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calculations to include pair-potentials with a weaker decay, and in particular potentials
proportional to r�4, to determine if and when the law of rectilinear diameters no longer
holds and whether the exponent obtained above follows.

3. CRITICAL POINT PROPERTIES OF LIQUID ALKALIS

COMPARED TO THOSE OF ELECTRON–HOLE DROPLETS

The focus in this section will be on properties at the critical point itself. Chapman
and March [8] have shown that a relationship exists between the critical temperature
Tc and critical number density �c for the five fluid alkalis, namely

Tc�
�1=3
c ¼ constant ð10Þ

Here we examine the relevance of this relation to electron–hole liquids (EHLs) in
semiconductors. An EHL (or droplet) is a condensed phase of excitons which can
form in semiconductors irradiated by light at sufficiently low temperatures provided
the exciton density is high enough (see e.g. [9]).

This study is prompted by the very recent experiment of Shimano et al. [10],
who reported on the formation of an EHL with a high-critical temperature Tc¼

165K in diamond, by means of time-resolved luminescence measurements under an
intense femtosecond photoexcitation above the band gap. Then, by time-resolved spec-
tral shape analysis, a very high carrier density �0¼ 1.0� 1020 cm�3 at T¼ 0 is revealed,
together with the high value of the critical temperature Tc already recorded above.

Equation (10) above provides a natural starting point, but unfortunately while Tc is
known for at least 5 EHLs, the same is not true for the critical density �c. However,
prompted by the form (10), we have collected Tc and the zero temperature densities
�0 for EHLs in 5 semiconductors in Table I. Due to the form (10) we have studied
first the question as to whether Tc correlates with �0 in the 5 EHLs referred to in
Table I. Figure 4 demonstrates beyond reasonable doubt that Tc and �0 indeed corre-
late strongly. There is power law behavior between Tc and �0, although the 1/3 power
in Eq. (10) must be modified empirically, to 1/2.

Kalt et al. [11] observed picosecond electron–hole droplet formation in the indirect
gap material AlxGa1�xAs and, in the course of their experimental work, they refer to
a ‘‘scaling law’’

�c
�0

ffi 0:3 ð11Þ

TABLE I Values for the EHL number density �0 at T¼ 0, the critical temperature Tc and the dielectric
constant " in five indirect-gap semiconductors (extracted from Table 1 of Shimano et al., 2002)

�0 ðcm�3
Þ Tc ðKÞ "

Ge 2.5� 1017 6.7 16.0
Si 3.3� 1018 24.5 12
GaP 6� 1018 40 9.1
3C-SiC 7.8� 1018 41 9.72
Diamond 1.0� 1020 165 5.7
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Obviously, if we adopt this so-called ‘‘scaling law’’, then Eq. (10) and the result from
Fig. 4 come into intimate contact, and the conclusion is that there is a different expo-
nent, say generally denoted by @ for the relationship

Tc�
�@
c ¼ constant ð12Þ

with @ ¼ 1=3 for the 5 fluid alkalis and @ ¼ 1=2 for the EHLs.
Surprisingly already more than 20 years ago, Reinecke and Ying [11] had anticipated

a relation Tc�
�1=2
c ¼ constant. This is remarkable because it can be seen from Fig. 4 that

the ‘diamond’ point of Shimano et al. [10] is crucial to fitting the parabolic form, and
allowing the above constant to be made wholly quantitative. They went on however to
express doubts as to whether such a relation had any fundamental basis. This leads us
to the contribution of Likal’ter [13].

Likal’ter studies what he emphasizes is the limiting situation of the EHL in which
hole mass mh�me, the electron mass. He then gave individual formulae for the critical
constants Tc and �c discussed above, and also for the critical pressure pc. Our interest in
Likal’ter’s formulae is to expose relations between these critical constants which can
then be compared and contrasted with known results for the fluid alkali metals.

The first Tc� � result which follows from Likal’ter’s model is

Tc ¼ constant�
�1=3c

"
ð13Þ

FIGURE 4 Critical temperature Tc of EHL in the 5 semiconductors referred to in Table I versus the (zero
temperature) number density �0. The curve drawn is given by Tc�

�1=2
0 ¼ 16:3� 10�9 cm3=2 K.
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This formula differs qualitatively from the fluid metals finding of Chapman and March
[8] by the dielectric constant " of the semiconductors appearing in the denominator.
In Fig. 5 we have used the data from Table I, including the experimental dielectric
constant values recorded in the final column, to plot Tc vs ð�

1=3
0 ="Þ. There is clearly a

linear relation as predicted by Likal’ter’s model. Accepting the scaling relation (11),
the parabolic fit of the data in Fig. 4 can be reconciled with the linearity of Fig. 5
provided " and �0 are related, of course approximately, by a 1/6 power law. However,
at present we have no fundamental justification for a relation "�1=60 ¼ constant,
because, at least in principle, such a formula could contain the binding energy of
excitons, or the effective electron mass.

Returning to the similarities and differences from the fluid metals, we have also
employed Likal’ter’s individual formulae for Tc, �c and pc to calculate the so-called
compressibility ratio Zc defined as

Zc ¼
pc

�ckBTc
: ð14Þ

The limiting formulae (for mh�me) then lead to the result

Zc ¼
7

24
: ð15Þ

FIGURE 5 Critical temperature Tc of EHL of 5 semiconductors referred to in Table I versus n1=30 =", where
n0 is the number density of the EHL at T¼ 0 and " the dielectric constant.
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This relates to the value for the heavier alkalis, 0.217 for Rb and 0.203 for Cs, but there
is a wide variation through the alkali fluids (see [14]), Li having a value of 0.064. The
value in Eq. (15) is not so much smaller than the prediction from the van der Waals
equation of state, namely 3/8 (see e.g. [6]).

The conclusion from the present section is firstly that there are some interesting
similarities but also differences between the EHLs and the fluid alkali metals with
regard to critical properties. In both cases Tc is related to �1=3c , which reflects the finger-
prints of Coulomb interactions. For the EHL, however, this quantity �1=3c is divided
by the dielectric constant " of the semiconductors, high for Si and considerably reduced
for diamond. Secondly, the limiting formulae of Likal’ter [13] for Tc, �c and pc are
shown to yield the constant critical compressibility ratio Zc in Eq. (15), in contrast
to the wide spread of values of Zc in the fluid alkalis.

4. MELTING OF THE LITHIUM HALIDES COMPARED TO THE OCP

Here we consider the question of the behavior of the melting temperatures Tm of the
lithium halides LiF, LiCl, LiBr, LiI and we interpret also the hydride LiH as a
halide. To this end, we list in Table II the measured values of Tm for these five crystal-
line materials, together with their dielectric constant " and the Wigner–Seitz (WS)
radius rs defined as usual in terms of the average atomic density � through

� ¼
1

ð4=3Þ�r3s
ð16Þ

From the OCP, we expect from the melting analogue of Eq. (10) that

Tm ¼ constant�
1

rs
ð17Þ

However, similar to the comparison between the liquid alkalis and the EHL, the
dielectric constant of the crystal is now expected to modify this relation.

Figure 6 shows Tm versus 1/"rs. Though the horizontal errors in Fig. 6 are relatively
large because of the errors in the dielectric constant ", it is plain that apart from
LiI, a striking linear relation between Tm and 1/"rs exists. Clearly because of the
variation in the dielectric constant no such relation holds when only the density is
taken as the independent variable as is the case for the OCP. Note however that a

TABLE II Experimental values for the melting temperature, the dielectric constant and the WS-radius rs.
Data are taken from [15–17]

Tm (K) " rs (a.u.)

LiH 963 12 1.93
LiF 1113 9.2 and 9.0 1.90
LiCl 883 11.1 and 11.9 2.42
LiBr 823 12.1 and 13.0 2.60
LiI 740 11.0 2.84
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non-negligible intersection at infinitely low density is now present, which is absent for
the OCP.

Lithium bromide and iodide are almost not separated by the accuracy of 1/"rs, while
their melting temperatures differ substantially. It would therefore be of considerable
interest if the static (or low-frequency) dielectric constants of these two materials
could be re-measured with substantially improved accuracy. Here common expecta-
tions concerning the increase in anionic size from Cl to Br to I would suggest that
the polarizabilities also increase from Cl to Br to I. Then one expects electron affinities
to correspondingly decrease, as is in agreement with experiment, so that also one
expects "(LiCl)<"(LiBr)<"(LiI) which however is in disagreement with the reported
measurements of Lowndes and Martin [16].

Further, data available for the Na and K halides (see [16,17]) does display our
expected trend. The disagreement might most likely be due to an erroneously low-
measured value for "(LiI), and it may be noted that a modest increase toward our
expectation for "(LiI) would bring the plot into better form. A reasonable fit of the
results in Fig. 6, neglecting LiI, is given by

Tm ¼
A

"rs
þ B ð18Þ

with A¼ 688K and B¼ 405K.

FIGURE 6 Experimental melting points of the alkali halides versus 1/"rs.
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5. CONCLUSION

In this review we have discussed some of the empirical correlations we exposed concern-
ing Coulomb liquids along phase boundaries. In particular we considered liquid alkali
metals and electron–hole droplets in 5 semiconductors near the critical point of their
liquid–vapor coexistence curve and Li halides at melting point. For these systems,
the density dependence of respectively the critical and the melting temperature was
shown to be fully determined by the Coulomb interaction, modified when appropriate
by the dielectric constant. The exponents involved in the breakdown of the law
rectilinear diameters very close to the critical point in the heavy alkalis were studied
empirically and related to the behavior of the liquid–vapor coexistence curve over a
wide range of temperatures.
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Notes added in proof

1. In the present context it is noteworthy for liquid metallic Cs that a transport prop-
erty, electrical resistivity R, along the liquid–vapour coexistence curve (compare
Fig. 3 for Rb), can be related to a thermodynamic quantity, namely magnetic sus-
ceptibility X. Forming the quantity X�1 � X�1

c , where Xc denotes the Curie suscept-
ibility, extracted for Cs by W.W. Warren (1984) Phys. Rev., B29, 7012 (see also R.G.
Chapman and N.H. March (1988) Phys. Rev., B38, 792) one of us (NHM: in Recent
Developments in Liquid State Physics (1992) Adam Hilger, Bristol, p. 188) has
demonstrated a functional relation between R and X�1 � X�1

c . Subsequently, the
present writers have given theoretical arguments for the approximate linearity
between R�2/3 and X�1 � X�1

c (unpublished work).
2. Relating to Section 3, the interested reader is referred for fuller details to F.F. Leys,

N.H. March, G.G.N. Angilella and M.-L. Zhang (2002) Phys. Rev., B66, 073314.
3. It is of interest that the melting temperature Tm and the critical temperature Tc of the

alkali metals obey a remarkably linear relation Tm= aTcþ b, where a � 1/8 which is
the inverse of the local coordination number of the body-centred-cubic lattice.
Furthermore, though less data is available for the lithium halides, discussed in
Section 4, for critical constants, available evidence points to a similar linearity,
with a � 1/12.
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